summaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authorPhilFreeman <>2015-08-04 00:18:00 (GMT)
committerhdiff <hdiff@hdiff.luite.com>2015-08-04 00:18:00 (GMT)
commit83cb18a5d18a448f671ff47facfa16b22b91f1cc (patch)
treea2b8013c75822d2e7b3204f534880546fa78ca34 /tests
parentb7f4ed1fe863071139b42f9f40421ef693fbe2cf (diff)
version 0.7.2.00.7.2.0
Diffstat (limited to 'tests')
-rw-r--r--tests/Main.hs171
-rw-r--r--tests/support/flattened/Control-Monad-Eff-Class.purs24
-rw-r--r--tests/support/flattened/Control-Monad-Eff-Console.js18
-rw-r--r--tests/support/flattened/Control-Monad-Eff-Console.purs18
-rw-r--r--tests/support/flattened/Control-Monad-Eff-Unsafe.js8
-rw-r--r--tests/support/flattened/Control-Monad-Eff-Unsafe.purs10
-rw-r--r--tests/support/flattened/Control-Monad-Eff.js62
-rw-r--r--tests/support/flattened/Control-Monad-Eff.purs67
-rw-r--r--tests/support/flattened/Control-Monad-ST.js38
-rw-r--r--tests/support/flattened/Control-Monad-ST.purs42
-rw-r--r--tests/support/flattened/Data-Function.js233
-rw-r--r--tests/support/flattened/Data-Function.purs113
-rw-r--r--tests/support/flattened/Prelude.js222
-rw-r--r--tests/support/flattened/Prelude.purs860
-rw-r--r--tests/support/flattened/Test-Assert.js27
-rw-r--r--tests/support/flattened/Test-Assert.purs46
16 files changed, 1910 insertions, 49 deletions
diff --git a/tests/Main.hs b/tests/Main.hs
index 4bf2edd..398649c 100644
--- a/tests/Main.hs
+++ b/tests/Main.hs
@@ -13,18 +13,35 @@
-----------------------------------------------------------------------------
{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE DoAndIfThenElse #-}
+{-# LANGUAGE DoAndIfThenElse #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
+-- Failing tests can specify the kind of error that should be thrown with a
+-- @shouldFailWith declaration. For example:
+--
+-- "-- @shouldFailWith TypesDoNotUnify"
+--
+-- will cause the test to fail unless that module fails to compile with exactly
+-- one TypesDoNotUnify error.
+--
+-- If a module is expected to produce multiple type errors, then use multiple
+-- @shouldFailWith lines; for example:
+--
+-- -- @shouldFailWith TypesDoNotUnify
+-- -- @shouldFailWith TypesDoNotUnify
+-- -- @shouldFailWith TransitiveExportError
+
module Main (main) where
import qualified Language.PureScript as P
import qualified Language.PureScript.CodeGen.JS as J
import qualified Language.PureScript.CoreFn as CF
-import Data.List (isSuffixOf)
+import Data.Char (isSpace)
+import Data.Maybe (mapMaybe, fromMaybe)
+import Data.List (isSuffixOf, sort, stripPrefix)
import Data.Traversable (traverse)
import Data.Time.Clock (UTCTime())
@@ -33,6 +50,7 @@ import qualified Data.Map as M
import Control.Monad
import Control.Monad.IO.Class (liftIO)
import Control.Applicative
+import Control.Arrow ((>>>))
import Control.Monad.Reader
import Control.Monad.Writer
@@ -44,6 +62,7 @@ import System.Exit
import System.Process
import System.FilePath
import System.Directory
+import qualified System.FilePath.Glob as Glob
import Text.Parsec (ParseError)
@@ -60,31 +79,23 @@ makeActions :: M.Map P.ModuleName (FilePath, P.ForeignJS) -> P.MakeActions Test
makeActions foreigns = P.MakeActions getInputTimestamp getOutputTimestamp readExterns codegen progress
where
getInputTimestamp :: P.ModuleName -> Test (Either P.RebuildPolicy (Maybe UTCTime))
- getInputTimestamp mn
- | isPreludeModule (P.runModuleName mn) = return (Left P.RebuildNever)
+ getInputTimestamp mn
+ | isSupportModule (P.runModuleName mn) = return (Left P.RebuildNever)
| otherwise = return (Left P.RebuildAlways)
where
- isPreludeModule = flip elem
- [ "Prelude.Unsafe"
- , "Prelude"
- , "Data.Function"
- , "Control.Monad.Eff"
- , "Control.Monad.ST"
- , "Debug.Trace"
- , "Assert"
- ]
-
+ isSupportModule = flip elem supportModules
+
getOutputTimestamp :: P.ModuleName -> Test (Maybe UTCTime)
getOutputTimestamp mn = do
let filePath = modulesDir </> P.runModuleName mn
exists <- liftIO $ doesDirectoryExist filePath
return (if exists then Just (error "getOutputTimestamp: read timestamp") else Nothing)
-
+
readExterns :: P.ModuleName -> Test (FilePath, String)
readExterns mn = do
let filePath = modulesDir </> P.runModuleName mn </> "externs.purs"
(filePath, ) <$> readTextFile filePath
-
+
codegen :: CF.Module CF.Ann -> P.Environment -> P.SupplyVar -> P.Externs -> Test ()
codegen m _ nextVar exts = do
let mn = CF.moduleName m
@@ -101,15 +112,15 @@ makeActions foreigns = P.MakeActions getInputTimestamp getOutputTimestamp readEx
writeTextFile jsFile pjs
maybe (return ()) (writeTextFile foreignFile . snd) $ CF.moduleName m `M.lookup` foreigns
writeTextFile externsFile exts
-
+
readTextFile :: FilePath -> Test String
readTextFile path = liftIO $ readFile path
-
+
writeTextFile :: FilePath -> String -> Test ()
writeTextFile path text = liftIO $ do
createDirectoryIfMissing True (takeDirectory path)
writeFile path text
-
+
progress :: String -> Test ()
progress = liftIO . putStrLn
@@ -118,28 +129,30 @@ readInput inputFiles = forM inputFiles $ \inputFile -> do
text <- readFile inputFile
return (inputFile, text)
+type TestM = WriterT [(FilePath, String)] IO
+
compile :: [FilePath] -> M.Map P.ModuleName (FilePath, P.ForeignJS) -> IO (Either P.MultipleErrors P.Environment)
compile inputFiles foreigns = runTest $ do
fs <- liftIO $ readInput inputFiles
ms <- P.parseModulesFromFiles id fs
- P.make (makeActions foreigns) (map (\(k, v) -> (Right k, v)) ms)
+ P.make (makeActions foreigns) (map snd ms)
-assert :: [FilePath] ->
- M.Map P.ModuleName (FilePath, P.ForeignJS) ->
- (Either P.MultipleErrors P.Environment -> IO (Maybe String)) ->
- IO ()
+assert :: [FilePath] ->
+ M.Map P.ModuleName (FilePath, P.ForeignJS) ->
+ (Either P.MultipleErrors P.Environment -> IO (Maybe String)) ->
+ TestM ()
assert inputFiles foreigns f = do
- e <- compile inputFiles foreigns
- maybeErr <- f e
+ e <- liftIO $ compile inputFiles foreigns
+ maybeErr <- liftIO $ f e
case maybeErr of
- Just err -> putStrLn err >> exitFailure
+ Just err -> tell [(last inputFiles, err)]
Nothing -> return ()
-assertCompiles :: [FilePath] -> M.Map P.ModuleName (FilePath, P.ForeignJS) -> IO ()
+assertCompiles :: [FilePath] -> M.Map P.ModuleName (FilePath, P.ForeignJS) -> TestM ()
assertCompiles inputFiles foreigns = do
- putStrLn $ "Assert " ++ last inputFiles ++ " compiles successfully"
+ liftIO . putStrLn $ "Assert " ++ last inputFiles ++ " compiles successfully"
assert inputFiles foreigns $ \e ->
- case e of
+ case e of
Left errs -> return . Just . P.prettyPrintMultipleErrors False $ errs
Right _ -> do
process <- findNodeProcess
@@ -151,36 +164,96 @@ assertCompiles inputFiles foreigns = do
Just (ExitFailure _, _, err) -> return $ Just err
Nothing -> return $ Just "Couldn't find node.js executable"
-assertDoesNotCompile :: [FilePath] -> M.Map P.ModuleName (FilePath, P.ForeignJS) -> IO ()
+assertDoesNotCompile :: [FilePath] -> M.Map P.ModuleName (FilePath, P.ForeignJS) -> TestM ()
assertDoesNotCompile inputFiles foreigns = do
- putStrLn $ "Assert " ++ last inputFiles ++ " does not compile"
+ let testFile = last inputFiles
+ liftIO . putStrLn $ "Assert " ++ testFile ++ " does not compile"
+ shouldFailWith <- getShouldFailWith testFile
assert inputFiles foreigns $ \e ->
case e of
- Left errs -> putStrLn (P.prettyPrintMultipleErrors False errs) >> return Nothing
- Right _ -> return $ Just "Should not have compiled"
+ Left errs -> do
+ putStrLn (P.prettyPrintMultipleErrors False errs)
+ return $ if null shouldFailWith
+ then Just $ "shouldFailWith declaration is missing (errors were: "
+ ++ show (map P.errorCode (P.runMultipleErrors errs))
+ ++ ")"
+ else checkShouldFailWith shouldFailWith errs
+ Right _ ->
+ return $ Just "Should not have compiled"
+
+ where
+ getShouldFailWith =
+ readFile
+ >>> liftIO
+ >>> fmap ( lines
+ >>> mapMaybe (stripPrefix "-- @shouldFailWith ")
+ >>> map trim
+ )
+
+ checkShouldFailWith expected errs =
+ let actual = map P.errorCode $ P.runMultipleErrors errs
+ in if sort expected == sort actual
+ then Nothing
+ else Just $ "Expected these errors: " ++ show expected ++ ", but got these: " ++ show actual
+
+ trim =
+ dropWhile isSpace >>> reverse >>> dropWhile isSpace >>> reverse
findNodeProcess :: IO (Maybe String)
findNodeProcess = runMaybeT . msum $ map (MaybeT . findExecutable) names
- where
+ where
names = ["nodejs", "node"]
main :: IO ()
main = do
+ fetchSupportCode
cwd <- getCurrentDirectory
-
- let preludeDir = cwd </> "tests" </> "prelude"
- preludePurs = preludeDir </> "Prelude.purs"
- jsDir = preludeDir </> "js"
- jsFiles <- map (jsDir </>) . filter (".js" `isSuffixOf`) <$> getDirectoryContents jsDir
- foreignFiles <- forM jsFiles (\f -> (f,) <$> readFile f)
+
+ let supportDir = cwd </> "tests" </> "support" </> "flattened"
+ let supportFiles ext = Glob.globDir1 (Glob.compile ("*." ++ ext)) supportDir
+
+ supportPurs <- supportFiles "purs"
+ supportJS <- supportFiles "js"
+
+ foreignFiles <- forM supportJS (\f -> (f,) <$> readFile f)
Right (foreigns, _) <- runExceptT $ runWriterT $ P.parseForeignModulesFromFiles foreignFiles
-
+
let passing = cwd </> "examples" </> "passing"
- passingTestCases <- getDirectoryContents passing
- forM_ passingTestCases $ \inputFile -> when (".purs" `isSuffixOf` inputFile) $
- assertCompiles [preludePurs, passing </> inputFile] foreigns
+ passingTestCases <- sort . filter (".purs" `isSuffixOf`) <$> getDirectoryContents passing
let failing = cwd </> "examples" </> "failing"
- failingTestCases <- getDirectoryContents failing
- forM_ failingTestCases $ \inputFile -> when (".purs" `isSuffixOf` inputFile) $
- assertDoesNotCompile [preludePurs, failing </> inputFile] foreigns
- exitSuccess
+ failingTestCases <- sort . filter (".purs" `isSuffixOf`) <$> getDirectoryContents failing
+
+ failures <- execWriterT $ do
+ forM_ passingTestCases $ \inputFile ->
+ assertCompiles (supportPurs ++ [passing </> inputFile]) foreigns
+ forM_ failingTestCases $ \inputFile ->
+ assertDoesNotCompile (supportPurs ++ [failing </> inputFile]) foreigns
+
+ if null failures
+ then exitSuccess
+ else do
+ putStrLn "Failures:"
+ forM_ failures $ \(fp, err) ->
+ let fp' = fromMaybe fp $ stripPrefix (failing ++ [pathSeparator]) fp
+ in putStrLn $ fp' ++ ": " ++ err
+ exitFailure
+
+fetchSupportCode :: IO ()
+fetchSupportCode = do
+ setCurrentDirectory "tests/support"
+ callProcess "npm" ["install"]
+ callProcess "bower" ["install"]
+ callProcess "node" ["setup.js"]
+ setCurrentDirectory "../.."
+
+supportModules :: [String]
+supportModules =
+ [ "Control.Monad.Eff.Class"
+ , "Control.Monad.Eff.Console"
+ , "Control.Monad.Eff"
+ , "Control.Monad.Eff.Unsafe"
+ , "Control.Monad.ST"
+ , "Data.Function"
+ , "Prelude"
+ , "Test.Assert"
+ ]
diff --git a/tests/support/flattened/Control-Monad-Eff-Class.purs b/tests/support/flattened/Control-Monad-Eff-Class.purs
new file mode 100644
index 0000000..dbfd58e
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff-Class.purs
@@ -0,0 +1,24 @@
+module Control.Monad.Eff.Class
+ ( MonadEff
+ , liftEff
+ ) where
+
+import Prelude
+
+import Control.Monad.Eff
+
+-- | The `MonadEff` class captures those monads which support native effects.
+-- |
+-- | Instances are provided for `Eff` itself, and the standard monad transformers.
+-- |
+-- | `liftEff` can be used in any appropriate monad transformer stack to lift an action
+-- | of type `Eff eff a` into the monad.
+-- |
+-- | Note that `MonadEff` is parameterized by the row of effects, so type inference can be
+-- | tricky. It is generally recommended to either work with a polymorphic row of effects,
+-- | or a concrete, closed row of effects such as `(trace :: Trace)`.
+class (Monad m) <= MonadEff eff m where
+ liftEff :: forall a. Eff eff a -> m a
+
+instance monadEffEff :: MonadEff eff (Eff eff) where
+ liftEff = id
diff --git a/tests/support/flattened/Control-Monad-Eff-Console.js b/tests/support/flattened/Control-Monad-Eff-Console.js
new file mode 100644
index 0000000..9ccfc26
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff-Console.js
@@ -0,0 +1,18 @@
+/* global exports, console */
+"use strict";
+
+// module Control.Monad.Eff.Console
+
+exports.log = function (s) {
+ return function () {
+ console.log(s);
+ return {};
+ };
+};
+
+exports.error = function (s) {
+ return function () {
+ console.error(s);
+ return {};
+ };
+};
diff --git a/tests/support/flattened/Control-Monad-Eff-Console.purs b/tests/support/flattened/Control-Monad-Eff-Console.purs
new file mode 100644
index 0000000..0a03ee4
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff-Console.purs
@@ -0,0 +1,18 @@
+module Control.Monad.Eff.Console where
+
+import Prelude
+
+import Control.Monad.Eff
+
+-- | The `CONSOLE` effect represents those computations which write to the console.
+foreign import data CONSOLE :: !
+
+-- | Write a message to the console.
+foreign import log :: forall eff. String -> Eff (console :: CONSOLE | eff) Unit
+
+-- | Write an error to the console.
+foreign import error :: forall eff. String -> Eff (console :: CONSOLE | eff) Unit
+
+-- | Write a value to the console, using its `Show` instance to produce a `String`.
+print :: forall a eff. (Show a) => a -> Eff (console :: CONSOLE | eff) Unit
+print = log <<< show
diff --git a/tests/support/flattened/Control-Monad-Eff-Unsafe.js b/tests/support/flattened/Control-Monad-Eff-Unsafe.js
new file mode 100644
index 0000000..bada18a
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff-Unsafe.js
@@ -0,0 +1,8 @@
+/* global exports */
+"use strict";
+
+// module Control.Monad.Eff.Unsafe
+
+exports.unsafeInterleaveEff = function (f) {
+ return f;
+};
diff --git a/tests/support/flattened/Control-Monad-Eff-Unsafe.purs b/tests/support/flattened/Control-Monad-Eff-Unsafe.purs
new file mode 100644
index 0000000..5d6f104
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff-Unsafe.purs
@@ -0,0 +1,10 @@
+module Control.Monad.Eff.Unsafe where
+
+import Prelude
+
+import Control.Monad.Eff
+
+-- | Change the type of an effectful computation, allowing it to be run in another context.
+-- |
+-- | Note: use of this function can result in arbitrary side-effects.
+foreign import unsafeInterleaveEff :: forall eff1 eff2 a. Eff eff1 a -> Eff eff2 a
diff --git a/tests/support/flattened/Control-Monad-Eff.js b/tests/support/flattened/Control-Monad-Eff.js
new file mode 100644
index 0000000..1498f21
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff.js
@@ -0,0 +1,62 @@
+/* global exports */
+"use strict";
+
+// module Control.Monad.Eff
+
+exports.returnE = function (a) {
+ return function () {
+ return a;
+ };
+};
+
+exports.bindE = function (a) {
+ return function (f) {
+ return function () {
+ return f(a())();
+ };
+ };
+};
+
+exports.runPure = function (f) {
+ return f();
+};
+
+exports.untilE = function (f) {
+ return function () {
+ while (!f());
+ return {};
+ };
+};
+
+exports.whileE = function (f) {
+ return function (a) {
+ return function () {
+ while (f()) {
+ a();
+ }
+ return {};
+ };
+ };
+};
+
+exports.forE = function (lo) {
+ return function (hi) {
+ return function (f) {
+ return function () {
+ for (var i = lo; i < hi; i++) {
+ f(i)();
+ }
+ };
+ };
+ };
+};
+
+exports.foreachE = function (as) {
+ return function (f) {
+ return function () {
+ for (var i = 0, l = as.length; i < l; i++) {
+ f(as[i])();
+ }
+ };
+ };
+};
diff --git a/tests/support/flattened/Control-Monad-Eff.purs b/tests/support/flattened/Control-Monad-Eff.purs
new file mode 100644
index 0000000..0417c19
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-Eff.purs
@@ -0,0 +1,67 @@
+module Control.Monad.Eff
+ ( Eff()
+ , Pure()
+ , runPure
+ , untilE, whileE, forE, foreachE
+ ) where
+
+import Prelude
+
+-- | The `Eff` type constructor is used to represent _native_ effects.
+-- |
+-- | See [Handling Native Effects with the Eff Monad](https://github.com/purescript/purescript/wiki/Handling-Native-Effects-with-the-Eff-Monad) for more details.
+-- |
+-- | The first type parameter is a row of effects which represents the contexts in which a computation can be run, and the second type parameter is the return type.
+foreign import data Eff :: # ! -> * -> *
+
+foreign import returnE :: forall e a. a -> Eff e a
+
+foreign import bindE :: forall e a b. Eff e a -> (a -> Eff e b) -> Eff e b
+
+-- | The `Pure` type synonym represents _pure_ computations, i.e. ones in which all effects have been handled.
+-- |
+-- | The `runPure` function can be used to run pure computations and obtain their result.
+type Pure a = forall e. Eff e a
+
+-- | Run a pure computation and return its result.
+-- |
+-- | Note: since this function has a rank-2 type, it may cause problems to apply this function using the `$` operator. The recommended approach
+-- | is to use parentheses instead.
+foreign import runPure :: forall a. Pure a -> a
+
+instance functorEff :: Functor (Eff e) where
+ map = liftA1
+
+instance applyEff :: Apply (Eff e) where
+ apply = ap
+
+instance applicativeEff :: Applicative (Eff e) where
+ pure = returnE
+
+instance bindEff :: Bind (Eff e) where
+ bind = bindE
+
+instance monadEff :: Monad (Eff e)
+
+-- | Loop until a condition becomes `true`.
+-- |
+-- | `untilE b` is an effectful computation which repeatedly runs the effectful computation `b`,
+-- | until its return value is `true`.
+foreign import untilE :: forall e. Eff e Boolean -> Eff e Unit
+
+-- | Loop while a condition is `true`.
+-- |
+-- | `whileE b m` is effectful computation which runs the effectful computation `b`. If its result is
+-- | `true`, it runs the effectful computation `m` and loops. If not, the computation ends.
+foreign import whileE :: forall e a. Eff e Boolean -> Eff e a -> Eff e Unit
+
+-- | Loop over a consecutive collection of numbers.
+-- |
+-- | `forE lo hi f` runs the computation returned by the function `f` for each of the inputs
+-- | between `lo` (inclusive) and `hi` (exclusive).
+foreign import forE :: forall e. Number -> Number -> (Number -> Eff e Unit) -> Eff e Unit
+
+-- | Loop over an array of values.
+-- |
+-- | `foreach xs f` runs the computation returned by the function `f` for each of the inputs `xs`.
+foreign import foreachE :: forall e a. Array a -> (a -> Eff e Unit) -> Eff e Unit
diff --git a/tests/support/flattened/Control-Monad-ST.js b/tests/support/flattened/Control-Monad-ST.js
new file mode 100644
index 0000000..64597c1
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-ST.js
@@ -0,0 +1,38 @@
+/* global exports */
+"use strict";
+
+// module Control.Monad.ST
+
+exports.newSTRef = function (val) {
+ return function () {
+ return { value: val };
+ };
+};
+
+exports.readSTRef = function (ref) {
+ return function () {
+ return ref.value;
+ };
+};
+
+exports.modifySTRef = function (ref) {
+ return function (f) {
+ return function () {
+ /* jshint boss: true */
+ return ref.value = f(ref.value);
+ };
+ };
+};
+
+exports.writeSTRef = function (ref) {
+ return function (a) {
+ return function () {
+ /* jshint boss: true */
+ return ref.value = a;
+ };
+ };
+};
+
+exports.runST = function (f) {
+ return f;
+};
diff --git a/tests/support/flattened/Control-Monad-ST.purs b/tests/support/flattened/Control-Monad-ST.purs
new file mode 100644
index 0000000..ac113e5
--- /dev/null
+++ b/tests/support/flattened/Control-Monad-ST.purs
@@ -0,0 +1,42 @@
+module Control.Monad.ST where
+
+import Prelude
+
+import Control.Monad.Eff (Eff(), runPure)
+
+-- | The `ST` effect represents _local mutation_, i.e. mutation which does not "escape" into the surrounding computation.
+-- |
+-- | An `ST` computation is parameterized by a phantom type which is used to restrict the set of reference cells it is allowed to access.
+-- |
+-- | The `runST` function can be used to handle the `ST` effect.
+foreign import data ST :: * -> !
+
+-- | The type `STRef s a` represents a mutable reference holding a value of type `a`, which can be used with the `ST s` effect.
+foreign import data STRef :: * -> * -> *
+
+-- | Create a new mutable reference.
+foreign import newSTRef :: forall a h r. a -> Eff (st :: ST h | r) (STRef h a)
+
+-- | Read the current value of a mutable reference.
+foreign import readSTRef :: forall a h r. STRef h a -> Eff (st :: ST h | r) a
+
+-- | Modify the value of a mutable reference by applying a function to the current value.
+foreign import modifySTRef :: forall a h r. STRef h a -> (a -> a) -> Eff (st :: ST h | r) a
+
+-- | Set the value of a mutable reference.
+foreign import writeSTRef :: forall a h r. STRef h a -> a -> Eff (st :: ST h | r) a
+
+-- | Run an `ST` computation.
+-- |
+-- | Note: the type of `runST` uses a rank-2 type to constrain the phantom type `s`, such that the computation must not leak any mutable references
+-- | to the surrounding computation.
+-- |
+-- | It may cause problems to apply this function using the `$` operator. The recommended approach is to use parentheses instead.
+foreign import runST :: forall a r. (forall h. Eff (st :: ST h | r) a) -> Eff r a
+
+-- | A convenience function which combines `runST` with `runPure`, which can be used when the only required effect is `ST`.
+-- |
+-- | Note: since this function has a rank-2 type, it may cause problems to apply this function using the `$` operator. The recommended approach
+-- | is to use parentheses instead.
+pureST :: forall a. (forall h r. Eff (st :: ST h | r) a) -> a
+pureST st = runPure (runST st)
diff --git a/tests/support/flattened/Data-Function.js b/tests/support/flattened/Data-Function.js
new file mode 100644
index 0000000..0d6d0f4
--- /dev/null
+++ b/tests/support/flattened/Data-Function.js
@@ -0,0 +1,233 @@
+/* global exports */
+"use strict";
+
+// module Data.Function
+
+exports.mkFn0 = function (fn) {
+ return function () {
+ return fn({});
+ };
+};
+
+exports.mkFn1 = function (fn) {
+ return function (a) {
+ return fn(a);
+ };
+};
+
+exports.mkFn2 = function (fn) {
+ /* jshint maxparams: 2 */
+ return function (a, b) {
+ return fn(a)(b);
+ };
+};
+
+exports.mkFn3 = function (fn) {
+ /* jshint maxparams: 3 */
+ return function (a, b, c) {
+ return fn(a)(b)(c);
+ };
+};
+
+exports.mkFn4 = function (fn) {
+ /* jshint maxparams: 4 */
+ return function (a, b, c, d) {
+ return fn(a)(b)(c)(d);
+ };
+};
+
+exports.mkFn5 = function (fn) {
+ /* jshint maxparams: 5 */
+ return function (a, b, c, d, e) {
+ return fn(a)(b)(c)(d)(e);
+ };
+};
+
+exports.mkFn6 = function (fn) {
+ /* jshint maxparams: 6 */
+ return function (a, b, c, d, e, f) {
+ return fn(a)(b)(c)(d)(e)(f);
+ };
+};
+
+exports.mkFn7 = function (fn) {
+ /* jshint maxparams: 7 */
+ return function (a, b, c, d, e, f, g) {
+ return fn(a)(b)(c)(d)(e)(f)(g);
+ };
+};
+
+exports.mkFn8 = function (fn) {
+ /* jshint maxparams: 8 */
+ return function (a, b, c, d, e, f, g, h) {
+ return fn(a)(b)(c)(d)(e)(f)(g)(h);
+ };
+};
+
+exports.mkFn9 = function (fn) {
+ /* jshint maxparams: 9 */
+ return function (a, b, c, d, e, f, g, h, i) {
+ return fn(a)(b)(c)(d)(e)(f)(g)(h)(i);
+ };
+};
+
+exports.mkFn10 = function (fn) {
+ /* jshint maxparams: 10 */
+ return function (a, b, c, d, e, f, g, h, i, j) {
+ return fn(a)(b)(c)(d)(e)(f)(g)(h)(i)(j);
+ };
+};
+
+exports.runFn0 = function (fn) {
+ return fn();
+};
+
+exports.runFn1 = function (fn) {
+ return function (a) {
+ return fn(a);
+ };
+};
+
+exports.runFn2 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return fn(a, b);
+ };
+ };
+};
+
+exports.runFn3 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return fn(a, b, c);
+ };
+ };
+ };
+};
+
+exports.runFn4 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return fn(a, b, c, d);
+ };
+ };
+ };
+ };
+};
+
+exports.runFn5 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return function (e) {
+ return fn(a, b, c, d, e);
+ };
+ };
+ };
+ };
+ };
+};
+
+exports.runFn6 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return function (e) {
+ return function (f) {
+ return fn(a, b, c, d, e, f);
+ };
+ };
+ };
+ };
+ };
+ };
+};
+
+exports.runFn7 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return function (e) {
+ return function (f) {
+ return function (g) {
+ return fn(a, b, c, d, e, f, g);
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+};
+
+exports.runFn8 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return function (e) {
+ return function (f) {
+ return function (g) {
+ return function (h) {
+ return fn(a, b, c, d, e, f, g, h);
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+};
+
+exports.runFn9 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return function (e) {
+ return function (f) {
+ return function (g) {
+ return function (h) {
+ return function (i) {
+ return fn(a, b, c, d, e, f, g, h, i);
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+};
+
+exports.runFn10 = function (fn) {
+ return function (a) {
+ return function (b) {
+ return function (c) {
+ return function (d) {
+ return function (e) {
+ return function (f) {
+ return function (g) {
+ return function (h) {
+ return function (i) {
+ return function (j) {
+ return fn(a, b, c, d, e, f, g, h, i, j);
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+ };
+};
diff --git a/tests/support/flattened/Data-Function.purs b/tests/support/flattened/Data-Function.purs
new file mode 100644
index 0000000..37ceca1
--- /dev/null
+++ b/tests/support/flattened/Data-Function.purs
@@ -0,0 +1,113 @@
+module Data.Function where
+
+import Prelude
+
+-- | The `on` function is used to change the domain of a binary operator.
+-- |
+-- | For example, we can create a function which compares two records based on the values of their `x` properties:
+-- |
+-- | ```purescript
+-- | compareX :: forall r. { x :: Number | r } -> { x :: Number | r } -> Ordering
+-- | compareX = compare `on` _.x
+-- | ```
+on :: forall a b c. (b -> b -> c) -> (a -> b) -> a -> a -> c
+on f g x y = g x `f` g y
+
+-- | A function of zero arguments
+foreign import data Fn0 :: * -> *
+
+-- | A function of one argument
+foreign import data Fn1 :: * -> * -> *
+
+-- | A function of two arguments
+foreign import data Fn2 :: * -> * -> * -> *
+
+-- | A function of three arguments
+foreign import data Fn3 :: * -> * -> * -> * -> *
+
+-- | A function of four arguments
+foreign import data Fn4 :: * -> * -> * -> * -> * -> *
+
+-- | A function of five arguments
+foreign import data Fn5 :: * -> * -> * -> * -> * -> * -> *
+
+-- | A function of six arguments
+foreign import data Fn6 :: * -> * -> * -> * -> * -> * -> * -> *
+
+-- | A function of seven arguments
+foreign import data Fn7 :: * -> * -> * -> * -> * -> * -> * -> * -> *
+
+-- | A function of eight arguments
+foreign import data Fn8 :: * -> * -> * -> * -> * -> * -> * -> * -> * -> *
+
+-- | A function of nine arguments
+foreign import data Fn9 :: * -> * -> * -> * -> * -> * -> * -> * -> * -> * -> *
+
+-- | A function of ten arguments
+foreign import data Fn10 :: * -> * -> * -> * -> * -> * -> * -> * -> * -> * -> * -> *
+
+-- | Create a function of no arguments
+foreign import mkFn0 :: forall a. (Unit -> a) -> Fn0 a
+
+-- | Create a function of one argument
+foreign import mkFn1 :: forall a b. (a -> b) -> Fn1 a b
+
+-- | Create a function of two arguments from a curried function
+foreign import mkFn2 :: forall a b c. (a -> b -> c) -> Fn2 a b c
+
+-- | Create a function of three arguments from a curried function
+foreign import mkFn3 :: forall a b c d. (a -> b -> c -> d) -> Fn3 a b c d
+
+-- | Create a function of four arguments from a curried function
+foreign import mkFn4 :: forall a b c d e. (a -> b -> c -> d -> e) -> Fn4 a b c d e
+
+-- | Create a function of five arguments from a curried function
+foreign import mkFn5 :: forall a b c d e f. (a -> b -> c -> d -> e -> f) -> Fn5 a b c d e f
+
+-- | Create a function of six arguments from a curried function
+foreign import mkFn6 :: forall a b c d e f g. (a -> b -> c -> d -> e -> f -> g) -> Fn6 a b c d e f g
+
+-- | Create a function of seven arguments from a curried function
+foreign import mkFn7 :: forall a b c d e f g h. (a -> b -> c -> d -> e -> f -> g -> h) -> Fn7 a b c d e f g h
+
+-- | Create a function of eight arguments from a curried function
+foreign import mkFn8 :: forall a b c d e f g h i. (a -> b -> c -> d -> e -> f -> g -> h -> i) -> Fn8 a b c d e f g h i
+
+-- | Create a function of nine arguments from a curried function
+foreign import mkFn9 :: forall a b c d e f g h i j. (a -> b -> c -> d -> e -> f -> g -> h -> i -> j) -> Fn9 a b c d e f g h i j
+
+-- | Create a function of ten arguments from a curried function
+foreign import mkFn10 :: forall a b c d e f g h i j k. (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k) -> Fn10 a b c d e f g h i j k
+
+-- | Apply a function of no arguments
+foreign import runFn0 :: forall a. Fn0 a -> a
+
+-- | Apply a function of one argument
+foreign import runFn1 :: forall a b. Fn1 a b -> a -> b
+
+-- | Apply a function of two arguments
+foreign import runFn2 :: forall a b c. Fn2 a b c -> a -> b -> c
+
+-- | Apply a function of three arguments
+foreign import runFn3 :: forall a b c d. Fn3 a b c d -> a -> b -> c -> d
+
+-- | Apply a function of four arguments
+foreign import runFn4 :: forall a b c d e. Fn4 a b c d e -> a -> b -> c -> d -> e
+
+-- | Apply a function of five arguments
+foreign import runFn5 :: forall a b c d e f. Fn5 a b c d e f -> a -> b -> c -> d -> e -> f
+
+-- | Apply a function of six arguments
+foreign import runFn6 :: forall a b c d e f g. Fn6 a b c d e f g -> a -> b -> c -> d -> e -> f -> g
+
+-- | Apply a function of seven arguments
+foreign import runFn7 :: forall a b c d e f g h. Fn7 a b c d e f g h -> a -> b -> c -> d -> e -> f -> g -> h
+
+-- | Apply a function of eight arguments
+foreign import runFn8 :: forall a b c d e f g h i. Fn8 a b c d e f g h i -> a -> b -> c -> d -> e -> f -> g -> h -> i
+
+-- | Apply a function of nine arguments
+foreign import runFn9 :: forall a b c d e f g h i j. Fn9 a b c d e f g h i j -> a -> b -> c -> d -> e -> f -> g -> h -> i -> j
+
+-- | Apply a function of ten arguments
+foreign import runFn10 :: forall a b c d e f g h i j k. Fn10 a b c d e f g h i j k -> a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k
diff --git a/tests/support/flattened/Prelude.js b/tests/support/flattened/Prelude.js
new file mode 100644
index 0000000..6e4d364
--- /dev/null
+++ b/tests/support/flattened/Prelude.js
@@ -0,0 +1,222 @@
+/* global exports */
+"use strict";
+
+// module Prelude
+
+//- Functor --------------------------------------------------------------------
+
+exports.arrayMap = function (f) {
+ return function (arr) {
+ var l = arr.length;
+ var result = new Array(l);
+ for (var i = 0; i < l; i++) {
+ result[i] = f(arr[i]);
+ }
+ return result;
+ };
+};
+
+//- Bind -----------------------------------------------------------------------
+
+exports.arrayBind = function (arr) {
+ return function (f) {
+ var result = [];
+ for (var i = 0, l = arr.length; i < l; i++) {
+ Array.prototype.push.apply(result, f(arr[i]));
+ }
+ return result;
+ };
+};
+
+//- Monoid ---------------------------------------------------------------------
+
+exports.concatString = function (s1) {
+ return function (s2) {
+ return s1 + s2;
+ };
+};
+
+exports.concatArray = function (xs) {
+ return function (ys) {
+ return xs.concat(ys);
+ };
+};
+
+//- Semiring -------------------------------------------------------------------
+
+exports.intAdd = function (x) {
+ return function (y) {
+ /* jshint bitwise: false */
+ return x + y | 0;
+ };
+};
+
+exports.intMul = function (x) {
+ return function (y) {
+ /* jshint bitwise: false */
+ return x * y | 0;
+ };
+};
+
+exports.numAdd = function (n1) {
+ return function (n2) {
+ return n1 + n2;
+ };
+};
+
+exports.numMul = function (n1) {
+ return function (n2) {
+ return n1 * n2;
+ };
+};
+
+//- ModuloSemiring -------------------------------------------------------------
+
+exports.intDiv = function (x) {
+ return function (y) {
+ /* jshint bitwise: false */
+ return x / y | 0;
+ };
+};
+
+exports.intMod = function (x) {
+ return function (y) {
+ return x % y;
+ };
+};
+
+exports.numDiv = function (n1) {
+ return function (n2) {
+ return n1 / n2;
+ };
+};
+
+//- Ring -----------------------------------------------------------------------
+
+exports.intSub = function (x) {
+ return function (y) {
+ /* jshint bitwise: false */
+ return x - y | 0;
+ };
+};
+
+exports.numSub = function (n1) {
+ return function (n2) {
+ return n1 - n2;
+ };
+};
+
+//- Eq -------------------------------------------------------------------------
+
+exports.refEq = function (r1) {
+ return function (r2) {
+ return r1 === r2;
+ };
+};
+
+exports.refIneq = function (r1) {
+ return function (r2) {
+ return r1 !== r2;
+ };
+};
+
+exports.eqArrayImpl = function (f) {
+ return function (xs) {
+ return function (ys) {
+ if (xs.length !== ys.length) return false;
+ for (var i = 0; i < xs.length; i++) {
+ if (!f(xs[i])(ys[i])) return false;
+ }
+ return true;
+ };
+ };
+};
+
+exports.ordArrayImpl = function (f) {
+ return function (xs) {
+ return function (ys) {
+ var i = 0;
+ var xlen = xs.length;
+ var ylen = ys.length;
+ while (i < xlen && i < ylen) {
+ var x = xs[i];
+ var y = ys[i];
+ var o = f(x)(y);
+ if (o !== 0) {
+ return o;
+ }
+ i++;
+ }
+ if (xlen === ylen) {
+ return 0;
+ } else if (xlen > ylen) {
+ return -1;
+ } else {
+ return 1;
+ }
+ };
+ };
+};
+
+//- Ord ------------------------------------------------------------------------
+
+exports.unsafeCompareImpl = function (lt) {
+ return function (eq) {
+ return function (gt) {
+ return function (x) {
+ return function (y) {
+ return x < y ? lt : x > y ? gt : eq;
+ };
+ };
+ };
+ };
+};
+
+//- Lattice --------------------------------------------------------------------
+
+exports.boolOr = function (b1) {
+ return function (b2) {
+ return b1 || b2;
+ };
+};
+
+exports.boolAnd = function (b1) {
+ return function (b2) {
+ return b1 && b2;
+ };
+};
+
+//- ComplementedLattice --------------------------------------------------------
+
+exports.boolNot = function (b) {
+ return !b;
+};
+
+//- Show -----------------------------------------------------------------------
+
+exports.showIntImpl = function (n) {
+ return n.toString();
+};
+
+exports.showNumberImpl = function (n) {
+ /* jshint bitwise: false */
+ return n === (n | 0) ? n + ".0" : n.toString();
+};
+
+exports.showCharImpl = function (c) {
+ return c === "'" ? "'\\''" : "'" + c + "'";
+};
+
+exports.showStringImpl = function (s) {
+ return JSON.stringify(s);
+};
+
+exports.showArrayImpl = function (f) {
+ return function (xs) {
+ var ss = [];
+ for (var i = 0, l = xs.length; i < l; i++) {
+ ss[i] = f(xs[i]);
+ }
+ return "[" + ss.join(",") + "]";
+ };
+};
diff --git a/tests/support/flattened/Prelude.purs b/tests/support/flattened/Prelude.purs
new file mode 100644
index 0000000..6c06c5f
--- /dev/null
+++ b/tests/support/flattened/Prelude.purs
@@ -0,0 +1,860 @@
+module Prelude
+ ( Unit(), unit
+ , ($), (#)
+ , flip
+ , const
+ , asTypeOf
+ , otherwise
+ , Semigroupoid, compose, (<<<), (>>>)
+ , Category, id
+ , Functor, map, (<$>), (<#>), void
+ , Apply, apply, (<*>)
+ , Applicative, pure, liftA1
+ , Bind, bind, (>>=)
+ , Monad, return, liftM1, ap
+ , Semigroup, append, (<>), (++)
+ , Semiring, add, zero, mul, one, (+), (*)
+ , ModuloSemiring, div, mod, (/)
+ , Ring, sub, negate, (-)
+ , Num
+ , DivisionRing
+ , Eq, eq, (==), (/=)
+ , Ordering(..), Ord, compare, (<), (>), (<=), (>=)
+ , unsafeCompare
+ , Bounded, top, bottom
+ , BoundedOrd
+ , BooleanAlgebra, conj, disj, not, (&&), (||)
+ , Show, show
+ ) where
+
+-- | The `Unit` type has a single inhabitant, called `unit`. It represents
+-- | values with no computational content.
+-- |
+-- | `Unit` is often used, wrapped in a monadic type constructor, as the
+-- | return type of a computation where only
+-- | the _effects_ are important.
+newtype Unit = Unit {}
+
+-- | `unit` is the sole inhabitant of the `Unit` type.
+unit :: Unit
+unit = Unit {}
+
+infixr 0 $
+infixl 1 #
+
+-- | Applies a function to its argument.
+-- |
+-- | ```purescript
+-- | length $ groupBy productCategory $ filter isInStock $ products
+-- | ```
+-- |
+-- | is equivalent to:
+-- |
+-- | ```purescript
+-- | length (groupBy productCategory (filter isInStock products))
+-- | ```
+-- |
+-- | `($)` is different from [`(#)`](#-2) because it is right-infix instead of
+-- | left: `a $ b $ c $ d x = a $ (b $ (c $ (d $ x))) = a (b (c (d x)))`
+($) :: forall a b. (a -> b) -> a -> b
+($) f x = f x
+
+-- | Applies an argument to a function.
+-- |
+-- | ```purescript
+-- | products # filter isInStock # groupBy productCategory # length
+-- | ```
+-- |
+-- | is equivalent to:
+-- |
+-- | ```purescript
+-- | length (groupBy productCategory (filter isInStock products))
+-- | ```
+-- |
+-- | `(#)` is different from [`($)`](#-1) because it is left-infix instead of
+-- | right: `x # a # b # c # d = (((x # a) # b) # c) # d = d (c (b (a x)))`
+(#) :: forall a b. a -> (a -> b) -> b
+(#) x f = f x
+
+-- | Flips the order of the arguments to a function of two arguments.
+-- |
+-- | ```purescript
+-- | flip const 1 2 = const 2 1 = 2
+-- | ```
+flip :: forall a b c. (a -> b -> c) -> b -> a -> c
+flip f b a = f a b
+
+-- | Returns its first argument and ignores its second.
+-- |
+-- | ```purescript
+-- | const 1 "hello" = 1
+-- | ```
+const :: forall a b. a -> b -> a
+const a _ = a
+
+-- | This function returns its first argument, and can be used to assert type
+-- | equalities. This can be useful when types are otherwise ambiguous.
+-- |
+-- | ```purescript
+-- | main = print $ [] `asTypeOf` [0]
+-- | ```
+-- |
+-- | If instead, we had written `main = print []`, the type of the argument
+-- | `[]` would have been ambiguous, resulting in a compile-time error.
+asTypeOf :: forall a. a -> a -> a
+asTypeOf x _ = x
+
+-- | An alias for `true`, which can be useful in guard clauses:
+-- |
+-- | ```purescript
+-- | max x y | x >= y = x
+-- | | otherwise = y
+-- | ```
+otherwise :: Boolean
+otherwise = true
+
+-- | A `Semigroupoid` is similar to a [`Category`](#category) but does not
+-- | require an identity element `id`, just composable morphisms.
+-- |
+-- | `Semigroupoid`s must satisfy the following law:
+-- |
+-- | - Associativity: `p <<< (q <<< r) = (p <<< q) <<< r`
+-- |
+-- | One example of a `Semigroupoid` is the function type constructor `(->)`,
+-- | with `(<<<)` defined as function composition.
+class Semigroupoid a where
+ compose :: forall b c d. a c d -> a b c -> a b d
+
+instance semigroupoidFn :: Semigroupoid (->) where
+ compose f g x = f (g x)
+
+infixr 9 >>>
+infixr 9 <<<
+
+-- | `(<<<)` is an alias for `compose`.
+(<<<) :: forall a b c d. (Semigroupoid a) => a c d -> a b c -> a b d
+(<<<) = compose
+
+-- | Forwards composition, or `(<<<)` with its arguments reversed.
+(>>>) :: forall a b c d. (Semigroupoid a) => a b c -> a c d -> a b d
+(>>>) = flip compose
+
+-- | `Category`s consist of objects and composable morphisms between them, and
+-- | as such are [`Semigroupoids`](#semigroupoid), but unlike `semigroupoids`
+-- | must have an identity element.
+-- |
+-- | Instances must satisfy the following law in addition to the
+-- | `Semigroupoid` law:
+-- |
+-- | - Identity: `id <<< p = p <<< id = p`
+class (Semigroupoid a) <= Category a where
+ id :: forall t. a t t
+
+instance categoryFn :: Category (->) where
+ id x = x
+
+-- | A `Functor` is a type constructor which supports a mapping operation
+-- | `(<$>)`.
+-- |
+-- | `(<$>)` can be used to turn functions `a -> b` into functions
+-- | `f a -> f b` whose argument and return types use the type constructor `f`
+-- | to represent some computational context.
+-- |
+-- | Instances must satisfy the following laws:
+-- |
+-- | - Identity: `(<$>) id = id`
+-- | - Composition: `(<$>) (f <<< g) = (f <$>) <<< (g <$>)`
+class Functor f where
+ map :: forall a b. (a -> b) -> f a -> f b
+
+instance functorFn :: Functor ((->) r) where
+ map = compose
+
+instance functorArray :: Functor Array where
+ map = arrayMap
+
+foreign import arrayMap :: forall a b. (a -> b) -> Array a -> Array b
+
+infixl 4 <$>
+infixl 1 <#>
+
+-- | `(<$>)` is an alias for `map`
+(<$>) :: forall f a b. (Functor f) => (a -> b) -> f a -> f b
+(<$>) = map
+
+-- | `(<#>)` is `(<$>)` with its arguments reversed. For example:
+-- |
+-- | ```purescript
+-- | [1, 2, 3] <#> \n -> n * n
+-- | ```
+(<#>) :: forall f a b. (Functor f) => f a -> (a -> b) -> f b
+(<#>) fa f = f <$> fa
+
+-- | The `void` function is used to ignore the type wrapped by a
+-- | [`Functor`](#functor), replacing it with `Unit` and keeping only the type
+-- | information provided by the type constructor itself.
+-- |
+-- | `void` is often useful when using `do` notation to change the return type
+-- | of a monadic computation:
+-- |
+-- | ```purescript
+-- | main = forE 1 10 \n -> void do
+-- | print n
+-- | print (n * n)
+-- | ```
+void :: forall f a. (Functor f) => f a -> f Unit
+void fa = const unit <$> fa
+
+-- | The `Apply` class provides the `(<*>)` which is used to apply a function
+-- | to an argument under a type constructor.
+-- |
+-- | `Apply` can be used to lift functions of two or more arguments to work on
+-- | values wrapped with the type constructor `f`. It might also be understood
+-- | in terms of the `lift2` function:
+-- |
+-- | ```purescript
+-- | lift2 :: forall f a b c. (Apply f) => (a -> b -> c) -> f a -> f b -> f c
+-- | lift2 f a b = f <$> a <*> b
+-- | ```
+-- |
+-- | `(<*>)` is recovered from `lift2` as `lift2 ($)`. That is, `(<*>)` lifts
+-- | the function application operator `($)` to arguments wrapped with the
+-- | type constructor `f`.
+-- |
+-- | Instances must satisfy the following law in addition to the `Functor`
+-- | laws:
+-- |
+-- | - Associative composition: `(<<<) <$> f <*> g <*> h = f <*> (g <*> h)`
+-- |
+-- | Formally, `Apply` represents a strong lax semi-monoidal endofunctor.
+class (Functor f) <= Apply f where
+ apply :: forall a b. f (a -> b) -> f a -> f b
+
+instance applyFn :: Apply ((->) r) where
+ apply f g x = f x (g x)
+
+instance applyArray :: Apply Array where
+ apply = ap
+
+infixl 4 <*>
+
+-- | `(<*>)` is an alias for `apply`.
+(<*>) :: forall f a b. (Apply f) => f (a -> b) -> f a -> f b
+(<*>) = apply
+
+-- | The `Applicative` type class extends the [`Apply`](#apply) type class
+-- | with a `pure` function, which can be used to create values of type `f a`
+-- | from values of type `a`.
+-- |
+-- | Where [`Apply`](#apply) provides the ability to lift functions of two or
+-- | more arguments to functions whose arguments are wrapped using `f`, and
+-- | [`Functor`](#functor) provides the ability to lift functions of one
+-- | argument, `pure` can be seen as the function which lifts functions of
+-- | _zero_ arguments. That is, `Applicative` functors support a lifting
+-- | operation for any number of function arguments.
+-- |
+-- | Instances must satisfy the following laws in addition to the `Apply`
+-- | laws:
+-- |
+-- | - Identity: `(pure id) <*> v = v`
+-- | - Composition: `(pure <<<) <*> f <*> g <*> h = f <*> (g <*> h)`
+-- | - Homomorphism: `(pure f) <*> (pure x) = pure (f x)`
+-- | - Interchange: `u <*> (pure y) = (pure ($ y)) <*> u`
+class (Apply f) <= Applicative f where
+ pure :: forall a. a -> f a
+
+instance applicativeFn :: Applicative ((->) r) where
+ pure = const
+
+instance applicativeArray :: Applicative Array where
+ pure x = [x]
+
+-- | `return` is an alias for `pure`.
+return :: forall m a. (Applicative m) => a -> m a
+return = pure
+
+-- | `liftA1` provides a default implementation of `(<$>)` for any
+-- | [`Applicative`](#applicative) functor, without using `(<$>)` as provided
+-- | by the [`Functor`](#functor)-[`Applicative`](#applicative) superclass
+-- | relationship.
+-- |
+-- | `liftA1` can therefore be used to write [`Functor`](#functor) instances
+-- | as follows:
+-- |
+-- | ```purescript
+-- | instance functorF :: Functor F where
+-- | map = liftA1
+-- | ```
+liftA1 :: forall f a b. (Applicative f) => (a -> b) -> f a -> f b
+liftA1 f a = pure f <*> a
+
+-- | The `Bind` type class extends the [`Apply`](#apply) type class with a
+-- | "bind" operation `(>>=)` which composes computations in sequence, using
+-- | the return value of one computation to determine the next computation.
+-- |
+-- | The `>>=` operator can also be expressed using `do` notation, as follows:
+-- |
+-- | ```purescript
+-- | x >>= f = do y <- x
+-- | f y
+-- | ```
+-- |
+-- | where the function argument of `f` is given the name `y`.
+-- |
+-- | Instances must satisfy the following law in addition to the `Apply`
+-- | laws:
+-- |
+-- | - Associativity: `(x >>= f) >>= g = x >>= (\k => f k >>= g)`
+-- |
+-- | Associativity tells us that we can regroup operations which use `do`
+-- | notation so that we can unambiguously write, for example:
+-- |
+-- | ```purescript
+-- | do x <- m1
+-- | y <- m2 x
+-- | m3 x y
+-- | ```
+class (Apply m) <= Bind m where
+ bind :: forall a b. m a -> (a -> m b) -> m b
+
+instance bindFn :: Bind ((->) r) where
+ bind m f x = f (m x) x
+
+instance bindArray :: Bind Array where
+ bind = arrayBind
+
+foreign import arrayBind :: forall a b. Array a -> (a -> Array b) -> Array b
+
+infixl 1 >>=
+
+-- | `(>>=)` is an alias for `bind`.
+(>>=) :: forall m a b. (Bind m) => m a -> (a -> m b) -> m b
+(>>=) = bind
+
+-- | The `Monad` type class combines the operations of the `Bind` and
+-- | `Applicative` type classes. Therefore, `Monad` instances represent type
+-- | constructors which support sequential composition, and also lifting of
+-- | functions of arbitrary arity.
+-- |
+-- | Instances must satisfy the following laws in addition to the
+-- | `Applicative` and `Bind` laws:
+-- |
+-- | - Left Identity: `pure x >>= f = f x`
+-- | - Right Identity: `x >>= pure = x`
+class (Applicative m, Bind m) <= Monad m
+
+instance monadFn :: Monad ((->) r)
+instance monadArray :: Monad Array
+
+-- | `liftM1` provides a default implementation of `(<$>)` for any
+-- | [`Monad`](#monad), without using `(<$>)` as provided by the
+-- | [`Functor`](#functor)-[`Monad`](#monad) superclass relationship.
+-- |
+-- | `liftM1` can therefore be used to write [`Functor`](#functor) instances
+-- | as follows:
+-- |
+-- | ```purescript
+-- | instance functorF :: Functor F where
+-- | map = liftM1
+-- | ```
+liftM1 :: forall m a b. (Monad m) => (a -> b) -> m a -> m b
+liftM1 f a = do
+ a' <- a
+ return (f a')
+
+-- | `ap` provides a default implementation of `(<*>)` for any
+-- | [`Monad`](#monad), without using `(<*>)` as provided by the
+-- | [`Apply`](#apply)-[`Monad`](#monad) superclass relationship.
+-- |
+-- | `ap` can therefore be used to write [`Apply`](#apply) instances as
+-- | follows:
+-- |
+-- | ```purescript
+-- | instance applyF :: Apply F where
+-- | apply = ap
+-- | ```
+ap :: forall m a b. (Monad m) => m (a -> b) -> m a -> m b
+ap f a = do
+ f' <- f
+ a' <- a
+ return (f' a')
+
+-- | The `Semigroup` type class identifies an associative operation on a type.
+-- |
+-- | Instances are required to satisfy the following law:
+-- |
+-- | - Associativity: `(x <> y) <> z = x <> (y <> z)`
+-- |
+-- | One example of a `Semigroup` is `String`, with `(<>)` defined as string
+-- | concatenation.
+class Semigroup a where
+ append :: a -> a -> a
+
+infixr 5 <>
+infixr 5 ++
+
+-- | `(<>)` is an alias for `append`.
+(<>) :: forall s. (Semigroup s) => s -> s -> s
+(<>) = append
+
+-- | `(++)` is an alternative alias for `append`.
+(++) :: forall s. (Semigroup s) => s -> s -> s
+(++) = append
+
+instance semigroupString :: Semigroup String where
+ append = concatString
+
+instance semigroupUnit :: Semigroup Unit where
+ append _ _ = unit
+
+instance semigroupFn :: (Semigroup s') => Semigroup (s -> s') where
+ append f g = \x -> f x <> g x
+
+instance semigroupOrdering :: Semigroup Ordering where
+ append LT _ = LT
+ append GT _ = GT
+ append EQ y = y
+
+instance semigroupArray :: Semigroup (Array a) where
+ append = concatArray
+
+foreign import concatString :: String -> String -> String
+foreign import concatArray :: forall a. Array a -> Array a -> Array a
+
+-- | The `Semiring` class is for types that support an addition and
+-- | multiplication operation.
+-- |
+-- | Instances must satisfy the following laws:
+-- |
+-- | - Commutative monoid under addition:
+-- | - Associativity: `(a + b) + c = a + (b + c)`
+-- | - Identity: `zero + a = a + zero = a`
+-- | - Commutative: `a + b = b + a`
+-- | - Monoid under multiplication:
+-- | - Associativity: `(a * b) * c = a * (b * c)`
+-- | - Identity: `one * a = a * one = a`
+-- | - Multiplication distributes over addition:
+-- | - Left distributivity: `a * (b + c) = (a * b) + (a * c)`
+-- | - Right distributivity: `(a + b) * c = (a * c) + (b * c)`
+-- | - Annihiliation: `zero * a = a * zero = zero`
+class Semiring a where
+ add :: a -> a -> a
+ zero :: a
+ mul :: a -> a -> a
+ one :: a
+
+instance semiringInt :: Semiring Int where
+ add = intAdd
+ zero = 0
+ mul = intMul
+ one = 1
+
+instance semiringNumber :: Semiring Number where
+ add = numAdd
+ zero = 0.0
+ mul = numMul
+ one = 1.0
+
+instance semiringUnit :: Semiring Unit where
+ add _ _ = unit
+ zero = unit
+ mul _ _ = unit
+ one = unit
+
+infixl 6 +
+infixl 7 *
+
+-- | `(+)` is an alias for `add`.
+(+) :: forall a. (Semiring a) => a -> a -> a
+(+) = add
+
+-- | `(*)` is an alias for `mul`.
+(*) :: forall a. (Semiring a) => a -> a -> a
+(*) = mul
+
+foreign import intAdd :: Int -> Int -> Int
+foreign import intMul :: Int -> Int -> Int
+foreign import numAdd :: Number -> Number -> Number
+foreign import numMul :: Number -> Number -> Number
+
+-- | The `Ring` class is for types that support addition, multiplication,
+-- | and subtraction operations.
+-- |
+-- | Instances must satisfy the following law in addition to the `Semiring`
+-- | laws:
+-- |
+-- | - Additive inverse: `a - a = (zero - a) + a = zero`
+class (Semiring a) <= Ring a where
+ sub :: a -> a -> a
+
+instance ringInt :: Ring Int where
+ sub = intSub
+
+instance ringNumber :: Ring Number where
+ sub = numSub
+
+instance ringUnit :: Ring Unit where
+ sub _ _ = unit
+
+infixl 6 -
+
+-- | `(-)` is an alias for `sub`.
+(-) :: forall a. (Ring a) => a -> a -> a
+(-) = sub
+
+-- | `negate x` can be used as a shorthand for `zero - x`.
+negate :: forall a. (Ring a) => a -> a
+negate a = zero - a
+
+foreign import intSub :: Int -> Int -> Int
+foreign import numSub :: Number -> Number -> Number
+
+-- | The `ModuloSemiring` class is for types that support addition,
+-- | multiplication, division, and modulo (division remainder) operations.
+-- |
+-- | Instances must satisfy the following law in addition to the `Semiring`
+-- | laws:
+-- |
+-- | - Remainder: `a / b * b + (a `mod` b) = a`
+class (Semiring a) <= ModuloSemiring a where
+ div :: a -> a -> a
+ mod :: a -> a -> a
+
+instance moduloSemiringInt :: ModuloSemiring Int where
+ div = intDiv
+ mod = intMod
+
+instance moduloSemiringNumber :: ModuloSemiring Number where
+ div = numDiv
+ mod _ _ = 0.0
+
+instance moduloSemiringUnit :: ModuloSemiring Unit where
+ div _ _ = unit
+ mod _ _ = unit
+
+infixl 7 /
+
+-- | `(/)` is an alias for `div`.
+(/) :: forall a. (ModuloSemiring a) => a -> a -> a
+(/) = div
+
+foreign import intDiv :: Int -> Int -> Int
+foreign import numDiv :: Number -> Number -> Number
+foreign import intMod :: Int -> Int -> Int
+
+-- | A `Ring` where every nonzero element has a multiplicative inverse.
+-- |
+-- | Instances must satisfy the following law in addition to the `Ring` and
+-- | `ModuloSemiring` laws:
+-- |
+-- | - Multiplicative inverse: `(one / x) * x = one`
+-- |
+-- | As a consequence of this ```a `mod` b = zero``` as no divide operation
+-- | will have a remainder.
+class (Ring a, ModuloSemiring a) <= DivisionRing a
+
+instance divisionRingNumber :: DivisionRing Number
+instance divisionRingUnit :: DivisionRing Unit
+
+-- | The `Num` class is for types that are commutative fields.
+-- |
+-- | Instances must satisfy the following law in addition to the
+-- | `DivisionRing` laws:
+-- |
+-- | - Commutative multiplication: `a * b = b * a`
+class (DivisionRing a) <= Num a
+
+instance numNumber :: Num Number
+instance numUnit :: Num Unit
+
+-- | The `Eq` type class represents types which support decidable equality.
+-- |
+-- | `Eq` instances should satisfy the following laws:
+-- |
+-- | - Reflexivity: `x == x = true`
+-- | - Symmetry: `x == y = y == x`
+-- | - Transitivity: if `x == y` and `y == z` then `x == z`
+class Eq a where
+ eq :: a -> a -> Boolean
+
+infix 4 ==
+infix 4 /=
+
+-- | `(==)` is an alias for `eq`. Tests whether one value is equal to another.
+(==) :: forall a. (Eq a) => a -> a -> Boolean
+(==) = eq
+
+-- | `(/=)` tests whether one value is _not equal_ to another. Shorthand for
+-- | `not (x == y)`.
+(/=) :: forall a. (Eq a) => a -> a -> Boolean
+(/=) x y = not (x == y)
+
+instance eqBoolean :: Eq Boolean where
+ eq = refEq
+
+instance eqInt :: Eq Int where
+ eq = refEq
+
+instance eqNumber :: Eq Number where
+ eq = refEq
+
+instance eqChar :: Eq Char where
+ eq = refEq
+
+instance eqString :: Eq String where
+ eq = refEq
+
+instance eqUnit :: Eq Unit where
+ eq _ _ = true
+
+instance eqArray :: (Eq a) => Eq (Array a) where
+ eq = eqArrayImpl (==)
+
+instance eqOrdering :: Eq Ordering where
+ eq LT LT = true
+ eq GT GT = true
+ eq EQ EQ = true
+ eq _ _ = false
+
+foreign import refEq :: forall a. a -> a -> Boolean
+foreign import refIneq :: forall a. a -> a -> Boolean
+foreign import eqArrayImpl :: forall a. (a -> a -> Boolean) -> Array a -> Array a -> Boolean
+
+-- | The `Ordering` data type represents the three possible outcomes of
+-- | comparing two values:
+-- |
+-- | `LT` - The first value is _less than_ the second.
+-- | `GT` - The first value is _greater than_ the second.
+-- | `EQ` - The first value is _equal to_ the second.
+data Ordering = LT | GT | EQ
+
+-- | The `Ord` type class represents types which support comparisons with a
+-- | _total order_.
+-- |
+-- | `Ord` instances should satisfy the laws of total orderings:
+-- |
+-- | - Reflexivity: `a <= a`
+-- | - Antisymmetry: if `a <= b` and `b <= a` then `a = b`
+-- | - Transitivity: if `a <= b` and `b <= c` then `a <= c`
+class (Eq a) <= Ord a where
+ compare :: a -> a -> Ordering
+
+instance ordBoolean :: Ord Boolean where
+ compare = unsafeCompare
+
+instance ordInt :: Ord Int where
+ compare = unsafeCompare
+
+instance ordNumber :: Ord Number where
+ compare = unsafeCompare
+
+instance ordString :: Ord String where
+ compare = unsafeCompare
+
+instance ordChar :: Ord Char where
+ compare = unsafeCompare
+
+instance ordUnit :: Ord Unit where
+ compare _ _ = EQ
+
+instance ordArray :: (Ord a) => Ord (Array a) where
+ compare xs ys = compare 0 $ ordArrayImpl (\x y -> case compare x y of
+ EQ -> 0
+ LT -> 1
+ GT -> -1) xs ys
+
+foreign import ordArrayImpl :: forall a. (a -> a -> Int) -> Array a -> Array a -> Int
+
+instance ordOrdering :: Ord Ordering where
+ compare LT LT = EQ
+ compare EQ EQ = EQ
+ compare GT GT = EQ
+ compare LT _ = LT
+ compare EQ LT = GT
+ compare EQ GT = LT
+ compare GT _ = GT
+
+infixl 4 <
+infixl 4 >
+infixl 4 <=
+infixl 4 >=
+
+-- | Test whether one value is _strictly less than_ another.
+(<) :: forall a. (Ord a) => a -> a -> Boolean
+(<) a1 a2 = case a1 `compare` a2 of
+ LT -> true
+ _ -> false
+
+-- | Test whether one value is _strictly greater than_ another.
+(>) :: forall a. (Ord a) => a -> a -> Boolean
+(>) a1 a2 = case a1 `compare` a2 of
+ GT -> true
+ _ -> false
+
+-- | Test whether one value is _non-strictly less than_ another.
+(<=) :: forall a. (Ord a) => a -> a -> Boolean
+(<=) a1 a2 = case a1 `compare` a2 of
+ GT -> false
+ _ -> true
+
+-- | Test whether one value is _non-strictly greater than_ another.
+(>=) :: forall a. (Ord a) => a -> a -> Boolean
+(>=) a1 a2 = case a1 `compare` a2 of
+ LT -> false
+ _ -> true
+
+unsafeCompare :: forall a. a -> a -> Ordering
+unsafeCompare = unsafeCompareImpl LT EQ GT
+
+foreign import unsafeCompareImpl :: forall a. Ordering -> Ordering -> Ordering -> a -> a -> Ordering
+
+-- | The `Bounded` type class represents types that are finite.
+-- |
+-- | Although there are no "internal" laws for `Bounded`, every value of `a`
+-- | should be considered less than or equal to `top` by some means, and greater
+-- | than or equal to `bottom`.
+-- |
+-- | The lack of explicit `Ord` constraint allows flexibility in the use of
+-- | `Bounded` so it can apply to total and partially ordered sets, boolean
+-- | algebras, etc.
+class Bounded a where
+ top :: a
+ bottom :: a
+
+instance boundedBoolean :: Bounded Boolean where
+ top = true
+ bottom = false
+
+instance boundedUnit :: Bounded Unit where
+ top = unit
+ bottom = unit
+
+instance boundedOrdering :: Bounded Ordering where
+ top = GT
+ bottom = LT
+
+instance boundedInt :: Bounded Int where
+ top = 2147483647
+ bottom = -2147483648
+
+instance boundedFn :: (Bounded b) => Bounded (a -> b) where
+ top _ = top
+ bottom _ = bottom
+
+-- | The `BoundedOrd` type class represents totally ordered finite data types.
+-- |
+-- | Instances should satisfy the following law in addition to the `Ord` laws:
+-- |
+-- | - Ordering: `bottom <= a <= top`
+class (Bounded a, Ord a) <= BoundedOrd a
+
+instance boundedOrdBoolean :: BoundedOrd Boolean where
+instance boundedOrdUnit :: BoundedOrd Unit where
+instance boundedOrdOrdering :: BoundedOrd Ordering where
+instance boundedOrdInt :: BoundedOrd Int where
+
+-- | The `BooleanAlgebra` type class represents types that behave like boolean
+-- | values.
+-- |
+-- | Instances should satisfy the following laws in addition to the `Bounded`
+-- | laws:
+-- |
+-- | - Associativity:
+-- | - `a || (b || c) = (a || b) || c`
+-- | - `a && (b && c) = (a && b) && c`
+-- | - Commutativity:
+-- | - `a || b = b || a`
+-- | - `a && b = b && a`
+-- | - Distributivity:
+-- | - `a && (b || c) = (a && b) || (a && c)`
+-- | - `a || (b && c) = (a || b) && (a || c)`
+-- | - Identity:
+-- | - `a || bottom = a`
+-- | - `a && top = a`
+-- | - Idempotent:
+-- | - `a || a = a`
+-- | - `a && a = a`
+-- | - Absorption:
+-- | - `a || (a && b) = a`
+-- | - `a && (a || b) = a`
+-- | - Annhiliation:
+-- | - `a || top = top`
+-- | - Complementation:
+-- | - `a && not a = bottom`
+-- | - `a || not a = top`
+class (Bounded a) <= BooleanAlgebra a where
+ conj :: a -> a -> a
+ disj :: a -> a -> a
+ not :: a -> a
+
+instance booleanAlgebraBoolean :: BooleanAlgebra Boolean where
+ conj = boolAnd
+ disj = boolOr
+ not = boolNot
+
+instance booleanAlgebraUnit :: BooleanAlgebra Unit where
+ conj _ _ = unit
+ disj _ _ = unit
+ not _ = unit
+
+instance booleanAlgebraFn :: (BooleanAlgebra b) => BooleanAlgebra (a -> b) where
+ conj fx fy a = fx a `conj` fy a
+ disj fx fy a = fx a `disj` fy a
+ not fx a = not (fx a)
+
+infixr 3 &&
+infixr 2 ||
+
+-- | `(&&)` is an alias for `conj`.
+(&&) :: forall a. (BooleanAlgebra a) => a -> a -> a
+(&&) = conj
+
+-- | `(||)` is an alias for `disj`.
+(||) :: forall a. (BooleanAlgebra a) => a -> a -> a
+(||) = disj
+
+foreign import boolOr :: Boolean -> Boolean -> Boolean
+foreign import boolAnd :: Boolean -> Boolean -> Boolean
+foreign import boolNot :: Boolean -> Boolean
+
+-- | The `Show` type class represents those types which can be converted into
+-- | a human-readable `String` representation.
+-- |
+-- | While not required, it is recommended that for any expression `x`, the
+-- | string `show x` be executable PureScript code which evaluates to the same
+-- | value as the expression `x`.
+class Show a where
+ show :: a -> String
+
+instance showBoolean :: Show Boolean where
+ show true = "true"
+ show false = "false"
+
+instance showInt :: Show Int where
+ show = showIntImpl
+
+instance showNumber :: Show Number where
+ show = showNumberImpl
+
+instance showChar :: Show Char where
+ show = showCharImpl
+
+instance showString :: Show String where
+ show = showStringImpl
+
+instance showUnit :: Show Unit where
+ show _ = "unit"
+
+instance showArray :: (Show a) => Show (Array a) where
+ show = showArrayImpl show
+
+instance showOrdering :: Show Ordering where
+ show LT = "LT"
+ show GT = "GT"
+ show EQ = "EQ"
+
+foreign import showIntImpl :: Int -> String
+foreign import showNumberImpl :: Number -> String
+foreign import showCharImpl :: Char -> String
+foreign import showStringImpl :: String -> String
+foreign import showArrayImpl :: forall a. (a -> String) -> Array a -> String
diff --git a/tests/support/flattened/Test-Assert.js b/tests/support/flattened/Test-Assert.js
new file mode 100644
index 0000000..ad1a67c
--- /dev/null
+++ b/tests/support/flattened/Test-Assert.js
@@ -0,0 +1,27 @@
+/* global exports */
+"use strict";
+
+// module Test.Assert
+
+exports["assert'"] = function (message) {
+ return function (success) {
+ return function () {
+ if (!success) throw new Error(message);
+ return {};
+ };
+ };
+};
+
+exports.checkThrows = function (fn) {
+ return function () {
+ try {
+ fn();
+ return false;
+ } catch (e) {
+ if (e instanceof Error) return true;
+ var err = new Error("Threw something other than an Error");
+ err.something = e;
+ throw err;
+ }
+ };
+};
diff --git a/tests/support/flattened/Test-Assert.purs b/tests/support/flattened/Test-Assert.purs
new file mode 100644
index 0000000..66b8622
--- /dev/null
+++ b/tests/support/flattened/Test-Assert.purs
@@ -0,0 +1,46 @@
+module Test.Assert
+ ( assert'
+ , assert
+ , assertThrows
+ , assertThrows'
+ , ASSERT()
+ ) where
+
+import Control.Monad.Eff (Eff())
+import Prelude
+
+-- | Assertion effect type.
+foreign import data ASSERT :: !
+
+-- | Throws a runtime exception with message "Assertion failed" when the boolean
+-- | value is false.
+assert :: forall e. Boolean -> Eff (assert :: ASSERT | e) Unit
+assert = assert' "Assertion failed"
+
+-- | Throws a runtime exception with the specified message when the boolean
+-- | value is false.
+foreign import assert' :: forall e. String -> Boolean -> Eff (assert :: ASSERT | e) Unit
+
+-- | Throws a runtime exception with message "Assertion failed: An error should
+-- | have been thrown", unless the argument throws an exception when evaluated.
+-- |
+-- | This function is specifically for testing unsafe pure code; for example,
+-- | to make sure that an exception is thrown if a precondition is not
+-- | satisfied. Functions which use `Eff (err :: EXCEPTION | eff) a` can be
+-- | tested with `catchException` instead.
+assertThrows :: forall e a. (Unit -> a) -> Eff (assert :: ASSERT | e) Unit
+assertThrows = assertThrows' "Assertion failed: An error should have been thrown"
+
+-- | Throws a runtime exception with the specified message, unless the argument
+-- | throws an exception when evaluated.
+-- |
+-- | This function is specifically for testing unsafe pure code; for example,
+-- | to make sure that an exception is thrown if a precondition is not
+-- | satisfied. Functions which use `Eff (err :: EXCEPTION | eff) a` can be
+-- | tested with `catchException` instead.
+assertThrows' :: forall e a. String -> (Unit -> a) -> Eff (assert :: ASSERT | e) Unit
+assertThrows' msg fn =
+ checkThrows fn >>= assert' msg
+
+
+foreign import checkThrows :: forall e a. (Unit -> a) -> Eff (assert :: ASSERT | e) Boolean